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Abstract

Principles for the selection of a finite element method for a particular

problem are discussed. These principles are stated in terms of the notion of

approximability, optimality, and stability. Several examples are discussed

in detail as illustrations. Conclusions regarding the selection of finite

element methods are summarized in the final section of the paper.
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1. Introduction

Larger and larger classes of finite element methods are becoming

available for the approximate solution of engineering problems and the

selection of a method for a particular problem is an increasingly important

question. It is the purpose of this paper to discuss some principles for

the selection of finite element methods.

* A finite element method or, more generally, a variational method is

a discretization of a variational (weak) formulation of the problem under

consideration. More specifically, it consists of several items.

- " 1) Selection of a variational (weak) formulation of the original

problem. There are, in fact, many such formulations and their

choice can signifirantly affect the resulting finite element

method. The choice of a variational formulation leads to the

choice of a bilinear form.

2) Selection of a trial space. The trial space consists of those

elements (shape functions) with which the solution will be

be approximated. It is thus chosen so as to provide good

approximation properties. The choice of trial space depends,

of course, on the set of possible exact solutions under consideration.

3) Selection of a test space. This space is chosen so that the

approximate solution is easily computed and so that the error

is comparable with the error in the best possible approximation

4achievable by elements in the trial space.

4) Selection of the norm. The selection of the norm relates to the

measure of acceptability of the approximate solution and thus

depends on the goals of the computation.

5) Selection of the extension procedure. This procedure describes the

manner in which the trial and test spaces (and possibly the,

4 . . . . .r - .. . " • I- | | - I' " | - ' -
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variational formulation are changed) when the desired accuracy is not

achieved and the approximate solution has to be improved.

The selection of a method for a specific problem depends on the goals

of the computation, implementational questions, and other practical circum-

stances. Selection and comparison of methods is not a simple task and in

order to find "optimal" methods it is important to clarify as much as

possible the basic notion of a variational method and criteria by which

different methods can be compared. It is necessary to emphasize that selection

of methods depends on many factors and will always have a relative character.

The influence of computer technology on the selection process could be

especially important.

• Let us turn now to a brief outline of the paper. The paper is partially

expository in nature, with the mathematical results having primarily an illustra-

tive as opposed to a practical importance.

Section 2 deals with the principle ideas of a variational method.

Subsection 2.1 introduces the notions of simple variational, variational,

directed variational, and computational variational methods, concepts

we view as important for the discussion of the multiplicity

of methods considerid today in theory and practice. Subsection 2.2 discusses

approximability and optimality. Approximability refers to the quality of best

approximation achievable by the trial space (see 2) above) and optimality

refers to the comparison of the approximation yielded by the finite element

solution and the best possible approximation achievable by elements in the

trial space (see 3)above). In Subsection 2.3 optimality is elaborated on and

related to stability. We introduce the stability constant which is often

relatively easy to estimate and in terms of which one can estimate the oprimality

constant. The ideas introduced in Section 2 are illustrated by a series of examples.



In Section 3 we consider a further example of a finite element methods

which illustrates several of the ideas introduced in Section 2.

In Section 4 we summarize those conclusions regarding the selection

of finite element methods that can be drawn from the discussion in

Sections 2 and 3.

Throughout the paper we will use certain function spaces. For an

interval I = (a,B)

L (I){u : f julPdx < } 1 < p < o

Lp(1) 
Lp

f :u bounded} , p =

On L (I) we use the norm
p

lul Pdx)"p , p <
Iu[LlU'L =-

p ess supju(x)j , p
V EI

H k(I) = Hk  is the usual Sobolev space of functions whose first k derivatives

are in L2 (I) . On this space we use the norm

k 2 \1/2 [j ] = dju
lulHk(I) = J Y u[ U L2 (1)/ dx

By C!(I) we denote the space of functions whose first £ derivatives are

continuous on I = [a,P] with the norm

p) w0l Xd pai

(L ) will denote the spaces of pairs of functions in L
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2. Variational Methods

2.1. Fundamental Ideas

Throughout this paper we suppose we are interested in approximating

the unique solution u0  of some problem by a variational method of

discretization. (It is not necessary to give a precise statement of the

problem here.) In this section we shall formulate some important ideas

which will allow us to discuss variational methods of discretization.

A simple variational method is specified by a linear vector space H,

a finite dimensional subspace S c H called the trial space, a second

finite dimensional space V of the same dimension as S called the test

space, and a bilinear form B defined as H x V We assume that B(s,v)

is regular on S x V , i.e., we assume that for every 0 j s E S there is

a v E V such that B(s,v) # 0 . This condition is referred to as

, i N { N
regularity since, if { and i are bases for S and V ,

respectively, then B(s,v) is regular if and only if the matrix B(ji

is regular (or invertible). We will denote the simple variational method

by the four-tuple M = (H,S,V,B).

M is used to determine an approximate solution u (M) E S ,called

the M-approximate solution, to the exact solution u0 , which is assumed to

lie in H , by requiring that

(2.1.1) B(u0 (M),v) = B(uov)

holds for all v E V . Using the bases {pI} nd {4i) and writing
N

u0 (M) = ic P. , we see that (2.1.1) is equivalent to the system of equations
ij

N
SB(ji)c i = B(u 0 ' i) , i = 1,...,N.

~j=1

Since the matrix of this system is regular, the coefficients c. and hence
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the approximate solution uo(M) is uniquely determined. In this way we

associate to each u E H the M-approximate solution u(M) which is also

denoted by Pu or P(M)u . Note that Ps s for any s E S and there-

fore that P is a projection. We thus see that to any simple variational

method we uniquely associate the projection P = P(M) of H onto S

Often we will write M(S,V) instead of M to underline the dependence

S and V , especially if the H and B under consideration are clear

from the context. Likewise, instead of P(M) and u(M) we write P(S,V)

and u(S,V) , respectively.

The space H must be known, a priori, to contain the exact solution

u0  Furthermore, the bilinear form B must be such that B(u0,v) can

be computable from the data that determines the exact solution u0 , without

knowing u0  explicitly. Let us note that in this section we are not

discussing the questions of how well the M-approximate solution u0(M)

approximates the exact solution u0 * This is addressed in the next section.

Since the exact solution could, a priori, be any element in H we will often

denote it by u

We now formulate some typical examples; these will be elaborated on in

the remaining sections.

Example 2.1.1.

bet
L1(x) al 2 (x ))

(2.1.2) A =(alx a2x)
\21 (x) a 22 (x)/

be a matrix defined in I= (-v,r) , where aij E L(l) ,and A is

regular (invertible) with

i 1- 1 (l(X) c 12(x) )

(C c21 Wx c 22(x)
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where c E L (I) We then consider the problem of finding
ij (I1 1] u12] T

u(x) = (u[  (x),u x))T such that

(2.1.3) A(x)u(x) = f(x)

for a given f(x) = (f 1]x),f 2 ] (x))T where f E (L2)2

A simple variational method M = (H,S,V,B) is determined by the

choices

2
H= (L2(2 

[ [k]
{(s ll,s[2]):s[k] I c k]sin jx + I d[k]Cosjx , c.

j-l j=0 J.

and d k ] real,k = 1,2}

(2.1.4) B(u,v) = f FAu dx

S and V have the same dimension, namely N =.4n + 2 . We will later

show that B is regular on S x V under certain additional assumptions.

2 2For any f E (L2 (I))
2 , the exact solution u of (2.1.3) lies in (L2 (M))

and B(u,v) is computable in terms of f without knowing u since

we have

B(u,v) = J vTf dx

(We note that we could also take H = (LIM)) and allow f E (L12 ,

which by our definition would mean a different simple variational method.)

Example 2.1.2

Consider the problem of determining u(x) so that

5-u"(x) =f(x) ,x E 1 (-1,1)
4 (2.1.5) u(-) = u(1) = 0
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where f E L2(I)

a) Let

H = H {u(x):u H , u(-l) = u(1) OJ

S = V = {s is a polynomial of degree n, s(-l) s(1) = 01

For f E L2 (I) , the exact solution u of (2.1.5) lies in H1

The dimension of S and V is n - 1 . Finally we take

B(u,v) - 1 uv"dx

It is easy to see that B is bilinear on x V ,is regular on S x V,

'. and that

B(u,v) L fv dx

for any v E V , where u is the exact solution of (2.1.5).

b) We can also take H = H2 = L 2(I) . B(u,v) is still defined and

bilinear in H x V . This choice for H is important if f is for example,
2

a dipole, i.e., the derivative of the Dirac function. In this situation

u will be in H2 but not in H I  Thus the choice H = H2 allows us to

treat (2.1.5) with f a dipole. Note that computationally the methods

are identical, but according to our definition we are dealing with two

different simple variational methods, namely (HI,S,V,B) and (H2 ,S,V,B).

Example 2.1.3

Consider the problem of finding u(x) such that

-u'(x) = f(x) , x E I = (0,1)
(2.1.6)

u(0) = 0

4i



8

Let A = {0 x 0 < x1 <'''< x = 11 , where xj = J/n , be a uniform mesh

on I and set I. (x _ 1 x.) , h. - = 1/n , and h = 1/n

Then let

1
H = H = fu u E H (I) , u(O) 0 }

S = S = {s(x) s is continuous on I , s is linear in each I.n j

s(O) =0 .}

For the test spaces we will consider two choices:

a) V = V 1 = Vl  = fv(x) : v(x) is continuous on I,

v is linear on each I. , v(I) = 0}
J

b) V = V2 = V2  {v(x) : v(x) is constant on each I.}2,n j

In both cases we consider the bilinear form

B(u,v) 1 u'v dx

It is easy to see that B(u,v) is regular on S x V in both cases.

If f E L2 (1), then the solution u of (2.1.6) belongsto H and for

any v V

B(u,v) = fv dx

It often occurs that the approximate solution produced by a simple

variational method M, is judged to be insufficiently accurate and then

another method M, is chosen which will give better accuracy. If necessary,

a third method M'3  is chosen, and so forth. Although only finitely many

computations can be performed in practice, if a procedure is given for

determining the new simple method from the previous ones, one is

lead to an infinite sequence or familv of simple variational

methods, chosen to produce an approximate solution with acceptable accuracy
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by considering sufficiently many of the simple methods in the family. The

methods M are often chosen so as to share the same bilinear form B
n

We thus suppose we are given a pair of vector spaces H and V , a

bilinear form B on H x V , and consider a family F of pairs (S,V) of

subspaces S c H and V c V so that dim S = dim V < - and B is

regular on S x V . The family of simple methods M(S,V) = (H,S,V,B) for

(S,V) E F will be denoted by M = (H,V,F,B) and will be called a

variational method. A simple method M E (H,V,F,B) is completely

characterized by the pair (S,V) C F

In connection with such families of simple methods it is useful to speak

of error (absolute and relative) convergence, and other asymptotic concepts,

because the final aim is to obtain an M-approximate solution which approx-

imates the exact solution sufficiently well. Suppose X - H is a Banach

space with norm I-IX; we define the absolute error in the approximate solution

to be Iu-u(S,V)I . Let a be a function associating to every pair (S,V) E F

a real positive number a(S,v) ; a(S,V) will be called the discretization

parameter associated with the pair (S,V) . We say u(S,V) converges to

u in X as a(S,V) -* 0 , written

lim u(SV) = u
a(S ,V)-)O

if for each F there is a 6 -> 0 such that

Su(s)-u X <f

for any (S,V) E F satisfying a(S,V) < 5 . We will often now consider H

to be equipped with the norm .IX The family (H,X,V,F,B) together

with the discretization parameter a will be called a directed variational

method. For such directed variational methods we will use the notation

&ws



- .. - . .•.- . , . ,. . ° . . 'j - • • . " ." . o• -

10

M = (H,X,V,F,B,a) . The use of M for both the family of simple methods

and the directed method will not cause confusion.

When implementing a variation method we select a sequence (S ,V ) E F

defining the simple methods M = M(Sn,Vn) , and compute the M -approximate
n nn n

solutions un = u(S n,V n) with increasing n until an acceptable result

has been attained. The process of selecting (S+l, V+i) from (Si,Vi) ,

i 1,...,n, and possibly from u(SnVn) and other available information

will be called an extension procedure. The sequence {Mn} will be called

a computational variational method. Usually our acceptance criterion will

be quantified in terms of a norm, as described above.

Let us return now to our examples. We will elaborate in the examples

introduced earlier.

Example 2.1.1*

Let F be the family of pairs (S,V) , where S = V is the space of trigno-

2metric polynomials of arbitrary degree n. Further we select V = H = (L2(M))

By this selection we have characterized a variational method M = (H,V,F,B)
i

Choosing X = L , 1'1 -1L2 and a(S,V) 1 ,where n is the

degree of the polynomials in S (dim S 4n +2) , we define the directed

variational method M (H,X,V,F,B,a)

Selecting (Sn V ) E F , s = V being the space of trigonometric polynomialn ' n nl

of degree n , the extension procedure consists of increasing the polynomial degree

by one. The sequence of simple methods {M n , Mn = (H,S n,V nB), is a

computational variational method. A different extension procedure and computa-

tional method will be achieved if, for example, the degree of the polynomials

is increased in different way, say by 2.

Example 2.1.2*

Quite analogously as in the first example we select for F the family

of pairs (S ,V) S = V being the space of the algebraic polynomials of
n 11 n n
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degree n with zero values at x 0 , x = 1 In the case a) we choose V = H

X = H and in the case b) V H , X = L2(1) We further choose a(S V)

where n - I = d-im S n The extension procedure would consist now in some specin

manner of increasing the degree of the polynomials. The notions of a variational

directed variational, and computational variational method are now obvious.

Example 2.1.3*

In the case a) we obviously select for V the space of all

continuous, piecewise linear functions subordinate to any uniform

mesh which vanish at I In the case b) we let V be the space

of all piecewise constant functions subordinate to any uniform mesh. We choose

the discretization parameter a(S,V) = h = - and in both cases we
n

consider X = H . Note that in examples 2.1.1 and 2.1.2 we have S c S

V c V whenever a(S,V) > a(S,V) but that this is not the case in Example

2.1.3

In Example 2.1.3, instead of X H I we could select X L2

etc. We could also choose H = k N tI  k >_ 2 , instead of H =

2.2. Approximability and Optimality_

Consider a simple variational method M = (H,S,V,B)E M , where M= I",',,X,V,F, B,

is a directed variational method. The purpose of a variational method is to

obtain an M-approximate solution u(M) such that the error (say relative is

smaller than a given tolerance -u . This means that we wish to select M so that

(2.2.1) Iu(m) - uIX <- 1juJX

where u is the exact solution of our problem. Thus for a given problem

the fun amental goal is as follows: given X and T , we wish to choose

I - , ml I- u I
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M = (H,S,V,B) E M so that (2.2.1) is satisifed in the most effective way.

The word "effective" must of course be understood in a manner appropriate

to the particular situation.

To achieve (2.2.1) it is certainly necessary that

inf ju-sIx

(2.2.2) Z(u,S,X) = s

IuIX

The quantity Z(u,S,X) measures the relative error in the best possible

approximation of u by elements of S with respect to the chosen norm

I.IX , i.e., it measures the approximability of u by S with respect to

X and is called the approximability constant of S on u with respect to X or,

more briefly, the approximability constant.

That the trial functions are able to approximate the solution well,

i.e., that Z(u,S,X) is small, does not alone insure that the M-approximate

solution u(M) is close to the exact solution u . We therefore introduce

the ratio of the relative error in u(M) to the relative error in the best

approximation. For any u E H , with JUIx > 0 define C(u,M,X) 1 by

lJu(M) - UIx
" (2.2.3) u C(u,M,X) Z(u,S,X)

If Z(u,S,X) = 0 we set C(u,M,X) = 1 . The quantity C(u,M,X) measures the

opt imal ity of the approximate sol ut ion chosen by H and is cal led the optimal it

constant of M on u with respect to X or, more briefly, the optimality

constant. When C(u,M,X) is near 1 the approximate soluton u(M) is nearly

as good as the best possible approximation using the trial space S . We

emphasize that while Z(u,S,X) is independent of the form B and the test

space V , the optimality constant C(u,M,X) depends on S,V,B,X, and u

......
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The acceptance criterion (2.2.1) is thus simply that the product of

C(u,M,X) and Z(u,S,X) does not exceed -r

Although the exact solution u is unknown in any practical problem,

we often know some properties of u , namely that it belongs to H or to

H ,where H is a subset of H .We define the approximability constant

of the space S on H with respect to X as the number

Z(H,S,X) sup Z(u,S,X)
u EH

and the optimality constant of M on H with re~pect to X as

C(H,M,X) = sup C(u,M,X)
u EH

We extend the notion of optimality constant to the directed variational

method M -(H,X,V,F,B,a) by defining

C(H,M,X) sup G(H,M,X)
M EM

sup C (H,M(S,V),X)
(S,V)EF

* The directed variational method M is calle cuasi-optimal on H with

respect to X if C(H,M,X) is finite.

The set Ii C H can be arbitrary. E.g. in the Example 2.1.2 (2.1.2)

*in case a) we have chosen MH H1  but we could select for example

H = H l Hk 1.W al so can sel ect

H {uEH2 (1) nlfl1  u"(x) > alul 2 on (m,,rl) , where I-rl=a, , ai ~ 2 0

etc. Note that Z and C are homogeneous with respect to u 1.e,.X cl )

=Z(u,S,X) aind C(eiti,M,X) C(uJM,X) and so we cain rest nuct our intecrest
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only to functions u lying on the unit sphere.

UThe main use of the optimality constant C(u,M,X) and C(H,M,X) is

to provide an estimate for the absolute error lu-u(M)Iy in terms of the

error of best apprcximation inf lu-siX . From (2.2.3) we have
sES

lu-u(M) IX - C(u,M,X)Z(u,S,X)lulx

= C(u,M,X) inf lu-SIx
sES

which holds for any u E H For any u EH we have

lu-u(M)IX x  C(H,M,X) inf lu-slx
sES

As we have seen above, the effectiveness of a simple variational method

is influenced by two factors: approximability, which depends on the selec-

tion of the trial space S , and optimality, which depends on the selection of

S , V , and B. Give X , we thus want to choose M so that C(u,M,X) and

Z(u,S,X) are as small as possible. Let us now turn to a more detailed dis-

cussion of C(u,M,X). As indicated above we want C(u,M,X) to be not

much large than 1. Now, it is known that C(u,M,X) can depend strongly.4

on u (this will be illustrated later by examples). In order to make

precise and quantify this notion we say that the solution u is K-perfect

or K-perfect with respect to the method M if C(u,M,X) 5 K. We will say

u is perfect if it is K-perfect with a small K otherwise we will call it

rV

imperfect. A computational variational method {Mi } will be said to be {,-

perfect if C(u,MX ) _< K In practice we would usually want {K.} to be

bounded by a fairly small number or to be increasing only

slowly. We note that even if C(u,Mi,X) - , U(M) may still converge

,4 . . .. . . " -. - ° i i Il
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to u, for this particular u, 3ince the product C(uMi,X)Z(u,Si,X)

may still approach zero.

Since the method M is defined for all u E H , for a given K it is

natural to attempt to characterize the set H of all u E H for which

C(u,M,X) _ K

i.e., to haracterize the largest set H satisfying

C (H, M, X) f: K

Usually it is not easy to describe the set in such a way that one could

in practice decide whether the exact solution belongs to it, except when

H=H=X .

The observations that C(u,M,X) may depend strongly on u is very

important. It is common practice to attempt to draw conclusions about the

performance of a method M from experimental computations. These conclusions

could be misleading since the computations may have been made for a solution

u which is K-perfect with a small K , and for which Z(u,S,X) is small.

These conclusions could then be false when some other solutions are

considered.

This situation i, - related to the notion of robustness. A simple method

M or a directed method M is said to be robust if it performs well. in

relatively general circumstances. It may be that a less robust method

performs better in certain situations. There are, in fact, methods which

perform well in certain situations but which fail to converge in others;

this is the extreme in nonrobustness. The importance of robustness has

to be seen in connection with the obse vat ions that computational cost is

becoming a smaller and smaller part of the total cost of engineering analysis.
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In summary, as much as possible we would like to have a directed method

M which is quasi-optimal on H H (usually H = X) with the constant

C(HM,X) not too large.

Next we make some simple observations connecting approximability,

optimality, and convergence, and rate of concergence of a directed varia-

tional method. A directed variational method is called convergent on H if

(2.2.4) lim Iu-u(S,V)IX = 0
, ca(s,v)-o

for all u E H . If r is a function defined on F satisfying

lim r(X,V) 0 , then the method is convergent with rate r on H if
a(SV)-O

lu-u(S,V) tx
(2.2.5) sup sup

uEH (S,V)E F r(S,V)

We can also define the rate of convergence of a computational

variational method {Mi I . {Mi } is said to converge with rate r if

' Iu-u(si,vi) Ix
(2.2.6) sup sup r(S V )

uEH i i'Vi

We note that if a directed variational method is quasi-optimal, then (2.2.4),

(2.2.5), or (2.2.6), respectively, holds if and only if

4 lim Z(u,S,X) = 0
a (S' ,)+

z z(u,S, x) I u x
sup sup <
u(H (S,V)EF r(S,V)

or

Z(u,Si,X)Iul x

sup sup - Si,Vi)
:l ~uEH i r
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respectively, hold.

We now return to our examples.

Example 2.2.1.

We consider the problem introduced in Examples 2.1.1 and 2.1.1* with

the matrix A(x) chosen as

/ )X-cos x sin xA(x)
A) K-sin x X-cos x

with X real, X # +1,0. In the discussion of this problem it will be

convenient to use complex notation rather than vector notation. Thus

regarding u and f as complex valued functions we can write

Au = f as

(2.2.7) (X-elX)u = f

where here we are using complex multiplication. For test and trial space

we now take

n
S S = V Vn = {v v c.e i  c complex

n.n j=-n 3

The bilinear form will now be

B(uv) = u(X-eix)v dx

-TT

It is easy to see that the bilinear form is regular on S x V under the

assumptions on X imposed above. We let H = V = L2 (1) and X = L2(I)

where here L2 (I) is the complex L2  space, i.e., the space of square

integrable complex valued functions with the norm
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u dx

lulx lullI )  -f

2-Ty

with lul being the absolute value of u
' n

ijx
V. If U(Sn,V) = u = c.(n)e is the approximate solution,
Ij=-n

then c.(n) are determined by
3

(X.e 1ix ) e Xi j dx

(2.2.8)

= Jl(Xe I X ) ueiJ x dx , lt n.
-IT

Writing the exact solution in the form

(2.2.9) U c.e1 X

we get

(2.2.10) lulX = 2n Y Ic. 2

It is immediate from (2.2.8) that the coefficients c.(n) must satisfy3

'I (n)?c - c
-n -n n-i

i(n) - jn) = k. - - j = - n + 1,...,n

Letting z (n) c (n) - -j these can be written

Xz =- c
-n -n-i

Xzj zj-l - n + 1,...,n
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If X # 0 , this system is uniquely solvable and we obtain

(2.2.11) Z -n+j - X c , j 0,1,...,2n

It follows from (2.2.9) and (2.2.10) that

Z(u,S n,X) 2 = 2i( le [1 2 )Jul x2

and from (2.2.9) - (2.2.11) that

2nn

Iu -u 12 C n1 2 X 2X -2j  + -,uS X)2 2

n x -n- 2Tr *n 1i X n lul

~J-o

- -4n-2
=+(u,s K = + __X) 1u/xn-1 1-),-2

)and therefore that

(2.2.12) C 9(UM n ,X) +C_ 1 2 2j 2 n2j

We will now analyz e separately the cases JXJ > 1 and JXJ < 1

a) First we assume ])X] > I. Then from (2.2.12) we see that

C(U'M n'X) - 1( =1 + 21 1/2_

for all u E L2 (i) and for all n, and thus

C(H,M,X) _ K

The method is therefore quasi-optimal on H with respect to X and all

solutions are perfect.
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b) Now assume IX! < I Then we see that

2 -2 1-X___
C (H,M ,X) = 1 + Xn l_X - 2

and the optimality constant deteriorates very quietly with n and we have

C(H,M,x) = + =

Let now H. c H, =1,2, be defined by1

H {u E L2 (I): Ic.n_11 2 >_ a 2  Ic1 2 for all ni, 0 < a <lIji>n

and

H - {u E L2 (I):c k_- 0 k 0 0}
2 2 k-

where cj are coefficients of the exact solution in (2.2.9). Then

obviously

n C(u,M(SnV n ) x) > -2n-1

for all u ( H1 and we see that all solutions belonging to H are very

imperfect for large n . On the other hand it is easy to check that all

solutions in H2 are perfect and M is quasi-optimal on H2 (C(H2M,X) = 1).

Assume now that the extension procedure is such that only (S2k,V2k), k > 1

are used. If

H = {u E L 0, : 0 1 odd}

3 L2(): =

then the method is once more quasi-optimal on H3 . (If another extension

procedure would he used then these solutions could he very imperfect.)

Consider now the subset of 1I4 of H1 defined by
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H4  {u E Hc1 : 2l Icj121-2rj 11u,1 2 < a < , > 2

Then for u H we have
4

['/i:: Iu j 2 2  , n  X 2  <- 2 k2(n+l)K ~ ~ c 121),1-2KJ ,,1Ik2(n+l)K ~l2

2 ji>n

and so

lu-u X < Ciujl IXI- 2 n- 2 lxi(n+l)K C~ u IxI(n+l)( 2
+ )

Hence we see that the method converges for u E H4 , since K > 2, inspIte

of the fact that the solution is very imperfect. (Nevertheless we can

expect computational difficulties caused by round off errors.) Using the

discretization parameter a(S nV ) n we see that we have, in the above

mentioned case, the rate of convergence r = IX (n+l) (- 2+ r) (i.e., exponentional

rate of convergence) which of course is lower that the error achievable

by S and characterized by Z(u,S nX)nn

c) Let us now consider the trial space S as before but change V
n n

to V defined byn

n+l XnI ijx
V = V = IV v = I c.e , c. complex)f

j=-n+l

Now the c.(n) are determined by (2.2.8) with j = -n+l,...,n+l . Repeating
J

now the analysis we easily see that for lXi < 1 , the method is quasi-

optimal on L2 (1) but it faces the difficulties for IlXI > 1 which are

analogous to those faced in the case JXJ < I when (S n,V n ) was used.

Let us now sunnarize some main points we have seen in this example.

1) If we select S nV for the test and trial space, then in the case

JXJ > 1 all solutions u E L 2(1) are perfect and the method is
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quasi-optimal. In the case i< i there are solutions which are very

imperfect but there exists a large class of solutions which are

perfect.

2) Although a solution can be very imperfect, the method still can

converge.

3) The optimality constant C(u,MnX) could deteriorate exponentially

with n and numerical experiments will most likely indicate this very

quickly, because it is unlikely that only perfect solutions will be used

in the experiments.

4) Changing the test space from V to V significantly changed the
n n

performance of the method. The case lxI > 1 has a symmetric "major"

part while the case lxik < I has a nonsymmetric "main" part. If the

symmetric part is the "major" one,then usually (as in this case) it

is desirable to select the same trial and test spaces, while if

the nonsymmetric part in the main one (Wxi < 1), then different trial

and test space are usually recommended.

Example 2.2.2 Consider the problem and the method introduced in

Example 2.1.2 and 2.1.2*.

a) Consider first the choice H = H = HI, X = XI = H

For any u E H1 we easily see that the equations defining u = u(M ) , namely,

Su ( S

n n

B(u n v) = B(u,v) , for v E Vn

are equivalent to

I{
u( S

u'v'dx f u'v'dx , for v E V1n 1n
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i.e. is the orthogonal projection of u into Sn with respect to
the inne- product (u'v) = u'v'dx on H1  It is immediate from

this that

~~~C(HlSX) < v.
1'IS n' XI 12-

Thus all u H are K-perfect with K - F

b) Now we turn to the second choice of space considered in Example 2.1.2

and 2.1. "  and namely H H2  and X X= L(1)and2 L 2(I)
For any u E X2 ,we can write

(2.2.13) U = P bp.

where the- P. are the Legendre polynomials and

(2.2.14) b . - 1 dx

We note traat

22
2b 2

P~ull~ 2 J=O 21+1

u can al'4o be formally written as

(2.2.15) u = ( dp.

where tpi - Pi 1 and
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[dl = -b0

(2.2.16) d = -b
2 1

dti-di+l = bi  1 =2,3,....

2
We will derive the formula for C (USn X2) in the special case when

u(x) is even with respect to 0 In this case b = 0 for i odd

11and d i  0 for i even. At first we assume u is a polynomial which

satisfies the boundary conditions u(+l) = 0 . Then both series expansions

(2.2.13) and (2.2.15) terminate after a finite number of terms.

Clearly

Iu- jx2
z(u,S, X2) =

IuJx 2

where s is the projection of u into S in the space X2 , i.e., wheren

s is characterized by

n

{ v dx J uv dx , for v E S

From the basic properties of Legendre polynomials we see that degree of

i- is i + I and T i(+l) 0 . Thus (p . 'n-I E S and moreover it

is easy to see that ' form a basis for S . We write s in

the form

n-l
Y (di+zi) i

1=l

and attempt to find the z. Since u is even we have d i = z. = 01 1
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for i even. For n 2k even, z2, ,z are easily seen to satisfy

the equations

(2 + 1 -z 33 =0

(2.2.17) -2.i + ( + z - 5  = 0

2 + ( + 2 d
4k-3 Z2k-3 + k-3 4k+lJz2k-l 4k+l 2k+l

which can be explicitly solved to obtain

(2.2.18) z2j = C(2j-l) , j = 1,2,...,k

where

dkl

(2.2.19) C = 2k+I
2k +3k+l

Now we write

n-i
u-= - zi(pi+l-Oi_1 ) + , di+l -I

i=l i=n

= +o

With this notation we have

2 = I =12 2 2 2 1

(2.2.20) 11-9 x2  X2 1P1x2 + JulK2 + 2-I Oo dx

Now
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=PI jI In z i(Pi+l-i-i Id.

n-i n-I Zj 1

- 1  i_ (pj+i-pjil)(Pi+l-i-ji)dx

Using the defining equations for z1,. .. ' Z2 k-l we thus have

2d k(2k-1)
(2.2.21) IpI. 2 = z2~

- 4k+1 d2k+lz2k-i (4k+i)(2k 2+3k+1)

Writing a in the form

IT j d2 d(p -i-1) d - 2k+ip2k + b b2k+2jP2k+2j
j=2k j~lj=i

we see that

b2

(2.2.22) jojI 2 2 dk 2 + 2 b2k 2.
X2 4k+i kl ~ 4k+4j--

Finaiiy we see that

J1  2 k+ 2

Thus, combining (2.2.20), (2.2.21), (2.2.22), and (2.2.23) we get

(2.2.4)

22 2 2 2

2 d 2  k(2k-1) b2
2k+i 2 2 bk2

2 4k+ d 2 -+j
(4k+i)(2k 2+3k+1) 4 l 2k4-1k+j~

- 2k +1 +22k-jj

2k 2+3k+1 j=1 k4 l
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Next we calculate 1U-ULxI In terms of the d and (p we

can ;:ive a simple formula for u , namely. n

n-1
(2.2..25) u = d1 ptn. i 

To se±- this observe that

= d. (P
i~l 1 1

= I dl(2i+l)p
ii=1

n-i
u' s di(2i+l)p in Tl

and hence

- (u'-un)dx = - (u-u)p"dx = 0 , j = 1,...,n-i

From (2.2.15), (2.2.22), and (2.2.25) we get

12 2 2
Iu-un = I I di qilX

2 =n 2

2 2 2 2k+21

4k+l 2k+l + 2 L 4k+4j+l

Finally combining (2.2.24i) and (2.2.26) we have
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Ju-u ~
I -n 1X2

2 X 2(2.2.27) C (u,S ,X2)n 2

. 2

22

2 2 b2k+2
4k+l d 2k+1 + 2 4k+4j+1

2 2

d2 k+l + 2 2k+2j
2

2k +3k-l j=l

2
d2 k+l + A

4k+1 2K+1

2d2 k+l

2 2 + A2 k+l
2k +3k+l

where

A2k+2j
2k+l = [ 4k+4j+lj =1

and n = 2k We have established (2.2.27) for any even polynomial satisfying

the boundary conditions. A simple limiting argument establishes it for any

even u E L 2 (I)

It is immediate from (2.2.27) that

(2.2.28) C xn -- C(X MNX < C

1 2' , 2) C2 V

and so

C(X2,mX 2) + -

2 2
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From (2.2.27) we also see that if u is such that

2d~2k+l
""< K for all k'.'" 4k+l < K2kI 4-1

then u is vr.-i perfect. For the particular choice u u 1, we get

b. = 0 ,j 1> and we see that

2k +3k+l 1/2

(2.2.29) C(u,MnX 2) = 4k+l Cvn .

By compairing (2.2.28) and (2.2.29) we see that u belongs to the set of

most imperfect solutions. It is easy to see that

-- < C

Z(US nX 2) x n

and hence

Hlu-u nlx  -< C n -1/2

n 2

Thus themethod converges for u although C(u,Sn,X2) +

If we define u by u I b ip where b. i -  with 0 < 6< 1/2,
,' i=O

. then we see that

2> 2dn+1
x 2  2n+1

4 2(b0+b2+ ..+b )2

2ni +1

2 (1+2- 44-c+... +n -F, 2

=22n+

> 2 2n+l

2-2c

= 2(2 n+l)

a
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This illustrates the fact that the method could diverge even though

Z(u,S ,X) - 0 . Although the method is not robust, we see that the optimality

constant grows relatively slowly with n (C -n

Let us now summarize some main points we have seen on this example.
°~l 1I

1) The method MI = (H , H,F,B,a) is quasi-optimal but the method

M= (HI,L 2,F,B,L) is not quasi-optimal, although computationally the methods

are identical.

2) The set of perfect solutions for the method M2 is relatively

large and very likely the method would work well. The performance, in fact, wou

be good unless the solution under consideration were one of the relatively

rare imperfect solutions. The performance can be good also if the solution

is imperfect since for reasonably smooth solutions u satisfying the boundary

conditions, Z(u,S ,L2) 0 more rapidly than (Vn) - . (Recall that

\n gives the growth of the optimality constant.)

2.3. Stability and the Stability Condition

We have seen that the optimality constants C(u,M,X), C(H,M,X), and C(H,M,X)

play essential roles in understanding variational methods. The notion

of K-perfect solutions is, in fact, defined in terms of C(uM,X) . We have

also seen in Exaimples 2.2.1 and 2.2.2 that the calculation or

estimation of optimality constants can be rather subtle. It is important
6

to be able to estimate these constants for wide classes of problems. Toward

this end we introduce the notion of the stability constant which is often

easier to estimate and in terms of which we can estimate the optimality4
constants.

Let M = (,S,V,B) be a simple variational method and let H c X and

H c H . For uEH define

IP(u+s) Ix
(2.3.1) D(u,M,X) = sup

sES u+slx

I
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and

(23.)D(H,M,X) = sup D(u,M,X)(2.3.2) uH

ju E

D(u,M,X) is called the stability constant of M on u with respect to

X and D(H,M,X) is called the stability constant of M on H with

respect to X . For a directed variational method M we define

D(H,M,X) = sup D(H,M,X) D(H,M,X) is called the stability constant of M on
MEM

H with respect to X . We say M is stable on H with respect to X if

D(H,M,X) is finite. We now show the relation between the stability and optimalit

constants.

Theorem 2.1 The stability and optimality constant satisfy

(2.3.3) D(u,M,X)-l - C(u,MX) 'E D(u,M,X)+l

and

(2.3.4) D(H,MX)-l < C(H,M,X) - D(H,M,X)+l

Proof. We easily see that

{u-PuI x = I(u-s) - P(u-s)IX

_< U-SIX + IP(u-s){x

- +D(u,M,X) 1{u-sj x

for any s E S , which proves the second inequality in (2.3.3). For any

s E S we have
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IP(u+s)lx I(u+s) - P(u+s)lx + lu+slx

lu+sIx Iu+Slx

lu-Puix
<1+

I u+slx

51 + ±iIp2ix

influ-sl
sES

= 1 + C(u,MX)

which proves the first inequality in (2.3.3). (2.3.4) follows immediately

from (2.3.3).

We see that a directed variational method is quasi-optimal if and

only if it is stable.

Let us now turn to a further discussion of stability. Suppose H is

closed in X . We easily see that D(H,M,X) = [iPi1 , the operator norm of

P . In Section 2.1 we introduced the idea of a computational

variational method as a sequence of simple variational methods M =n

(H,Sn,VnB) selected from a directed variational method M = (H,X,V,F,B,a)

Assume we are given such a sequence and suppose

(2.3.5) D(H,M ,X) = iIP(Mn )11 as n -

We will now show that this implies that there is a z E H such that the

method does not converge to z

Theorem 2.2 Suppose (2.3.5) holds and suppose H is closed in X

Then there is a z E H such that P(Mn )z z

4 Proof. Suppose the method converges for all u E H , i.e.,

IP(Mn )u -. uIx - 0 as n - for all u E H . This implies P(Mn)u is

bounded for each u . The uniform boundedness principle [6, p. 190] then
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implies that llP(Mn)11 is bounded in n This would contradict the

hypothesis (2.3.5).

Theorems 2.1 and 2.2 show that methods which are not quasi-optimal are not

robust in the sense that there exists solutions for which the methods do

not converge. It should be noted, however, that the solution z in

Theorem 2.2 could be very "wild" or "irregular" and the computational

variational method might still converge for a large class of u

in H.

Let us note a further significance of D . Suppose u E H and s E S

satisfies Z(u,S,X) = iu-six Set = Pu-s We easily see that

M IPu-sj x

= IP(u-s)i x

| D(u,M,X)1u-sl x .

Thus D is a magnification factor relating j[x and lu-six Usually

we replace D(u,M,X) by D(H,M,X). It should be noted that this replace-

ment could lead to a rather pessimistic estimate.

We noted earlier that the stability constants are often easier to

estimate than the optimality constants. We will now show how the stability

constantscan be estimated in terms of the bilinear form B.

Theorem 2.3. Suppose the space V is furnished with a norm l vI

Assume

1) for any u E H there is a constant C(u) such that

(2.3.6) IB(u+s,v)l C(u)ju+s lXIvIv for all s E S and v E V

and
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(2.3.7) 2) inf sup IB(s,v)I sy(S,V) > 0
sES vEV

IsJ Ix =  IVlv=1

Then

(2.3.8) D(u,M,X) -C(u)I
T (S ,V)

for all u E H

Proof. From (2.3.6) and (2.3.7) we have

'(sv)IP(u+s)x f sup IB(P(u+s),v)I
X vEV

= sup IB(u+s,v)I
vEV:.I IV i =1

_: c(u)lu+sJx

for all s E S , from which (2.3.8) follows.

Remark: If (2.3.6) holds for all u E H with C(u) replaced by C(H)

then (2.3.8) holds for all u E H with C(u) replaced by

C(H) , i.e.,

4D(H,M,X) - C(H)

We can also estimate D(H,M,X) below by l/y(S,V) provided certain

additional assumptions are made. Suppose H and V,furnished with the

norms j.JX and -IV , respectively, are a pair of Hilbert spaces or

reflexive Banach spaces, B is a bilinear form on H x V , and S c H

I V c V are a pair of finite dimensional subspaces. For v E V we set

IvIv -v- v Now assume

4'
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(2.3.9) IB(u,v)l Clj lviV o

uEH vEV

and

(2.3.11) sup IB(u,v)) > 0 , for 0 #v E V
uEH

We note that in the presence of (2.3.9), (2.3.10) and (2.3.11) are necessary

and sufficient for the variational problem

{B(u,v) =F(v) , for v E V

to be uniquely solvable for each bounded linear functional *F on V

In this situation we also have

Jl:s(-l F(v) L -1
lu X sup W ~ II

XvEV IVI

This result is proved in [I , p.112]

Theorem 2.4 Suppose (2.3.9)-(2.3.11) hold. Let u E S

and set

(2.3.12) sup IB(u,v)l Q(-u)
[li X vEV

Then there exists a u E H such that P(M)u =u and

(2.3.13) D (u, M,X)>
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Proof. Obviously F(v) B(u,v), v E V , defines a bounded linear functiona

V It is possible to show F(v) can be extended to a bounded linear

functional on V with

sun IF(v)I = sup IF(v)I = Q(u)iuIx
vEV VEV
Ivjv=l JjV=l

This is the content of the Hahn-Banach Theorem [6, p. 134].

As noted above, from (2.3.9)-(2.3.11) it follows there is a u E H

satisfying

B(u,v) = F(v) for all v E V , .

and

Q(u) 1ul1
(2.3.14) lul x  x

It follows immediately from the definition of F that P(M)u = u

Using (2.3.14)and the definition of D(u,M,X) we thus have

I Pu Ix 1 lx Wo
D(u,M,X) -_ - Ix =

u uj Q Od

This completes the proof.

Theorem 2.5. Suppose (2.3.7), (2.3.9) (2.3.11) hold. Then

(2.3.15) D(H,M,X) y(S,V)

Proof. This result follows [mmediately from Theorem 2.4 and the

definitions of D(H,M,X) and y(S,\ r )
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Let us now elaborate on Theorem 2.4. It shows that functions u

with D(u,M,X) large should be sought among functions whose projection

u= P(M)u have small Q(u) Of course not every u E H satisfying

P(M)u = u leads to large D(u,M,X) , as shown by the fact that for u E S

Pu = u and D(u,M,X) = 1 . If we define

(2.3.16) R(u) = {wEH:P(M)wuJ

then for u E R(u) D(u,M,X) Ali be largest for that u with smallest

UIx. Thus if we define

W(u) : inf IwIx

wER(U)

we see immediately that there is a w E H such that

rIx
D(w,M,X) > W(U-)

Obviously every choice of u E S and u ( R(u) leads to a lower bound

for D(H,M,V):

Ir ix
D(H,M, V) > --

, lUix

This gives a practical tool for estimating D(H,M,X) from below.

Condition (2.3.7) is easily seen to imply the regularity of the

bilinear form B on S V

A directed variational metlid M (fi,X,V,F,B,'r) is said to snti!;fv

the stability condition if

(2.3.17) Y(S,V) -- ()
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for all (S,V) E F . This condition is sometimes also called the inf-sup

condition, or the LBB or BB condition. Theorems 2.1 and 2.3 show that

when (2.3.17) holds, then D(H,M,X) is finite and the method is stable.

An especially important situation occurs when H = V , F is the

family of pairs (S,V) with S = V and

(2.3.18) B(u,u) y y1u12 , y > 0

for any u E S , (S,S) E F . Then y(S,S) ? y . In this case we say that

the form is coercive.

Suppose M = M(Sn,Vn),(Sn,Vn ) E F is a computational variational

method for which (Sn,V) -+ 0 as n -+ w In addition suppose M~n

satisfies the hypotheses of Theorem 2.4 for each n Then Theorem 2.4 shows

that there is a sequence u E H such that€ n

D(u ,Mn ,X) -nn

Theorem 2.4 does not show the existence of a u E H such that u(M ) 7 u
n

This, however, follows from Theorem 2.2.

Combining this observation with Theorem 2.3 we see that the stability

condition (2.3.17) is necessary and sufficient for quasi-optimality of the

directed variational method Ai = (H,X,V,F,B,cr) The condition is necessary

in the sense that if it fails then there will exist at least one u E H

* for which the method fails. As we have noted above, however, the method

may still perform well for all so]utions of major practical interest.

IThis terminiology relates to [11,151 where this condition was first introduced

in connection with the analysis of the finite element methods.
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Various statements in the literature that certain mixed methods work well

inspite of the fact that the LBB (BB) condition is violated have to be understood

in light of this observation.

Let us return now to the problems and methods introduced in our previous

examples and apply the results discussed in this section.

Example 2.3.1 (Cf. Examples 2.1.1, 2.1.1*, and 2.2.1).

Suppose A(x) in (2.1.3) is of the form

A(x) = A + B(x)
0

where A0 is a constant invertible matrix satisfying

IIAoJB(x)II !S q < 1

where 11'11 denotes the matrix norm associated with the Euclidean vectorS22
norm. Take X - H = (L2(I)) and let V = (L2(I))

2 as before

It -is immediate that

(uv) :E Clul X lv , for u E H , v E V

-1
with C = 2 max Ila. (x) Li Given u E H , let v (Ao )u. We

i i L(I)0

easily see that

B(_u,v) = tjA 0 1 (A0 +B)u dx
-T

= u(I+Ao B)u dx

lui2(I-q)

and
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I l _ n X

where Q = II(A0l)TII from which we obtain (2.3.10) with

o = 1z-q > 0

Q

Thus conditions (2.3.9) and (2.3.10) hold for this example. Condition

(2.3.11) is also easily seen to hold. (Note the assumption that A0 is

a constant matrix was not used.)

Our main goal is to show that (2.3.7) holds. In the previous paragraph

we have proved the infinite dimensional analogue. The proof of (2.3.7) is

similar but we use now the fact that A0  is constant matrix. For u E S

-l Tlet v= (A0  u. Then v E V since A0  is a constant matrix. The

above estimate thus shows that

Y(SV) i- > 0
-- Q

Therefore we see that the assumptions in Theorem 2.3 are satisfied and,

moreover, the stability condition (2.3.17) is satisfied with y(S,V) 2

Although the quasi-optimality of the method under our assumptions could be

proven by the approach and in Section 2.2, obviously the approach used here

is much simpler and can be used in many situations.

Examlle 2.3.2 (Cf. Examples 2.1.2, 2.1.2*, and 2.2.2.)
Consider the problem introduced in Example 2.1.2. Let H = H 01

H1 Cl I] -n r
;=X= ,aid V = H with the I-nor as above in case a. We obviously

have

B(u,u) > 2 12ui for u E H
X 1'

i.e., B is coercive, and we thus see that the assumptions of Theorem 2.3

are satisfied and hence the quasi-optimality of this method has again been

established. As we have seen in Example 2.2.2 a similar analysis would fail

in case b).
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Example 2.3.3 (Cf. Examples 2.1.3 and 2.1.3")

Let H=, =H I  and V= L 2

a) First let us consider the space Sn and V2,n introduced in

case b) in Example 2.1.3. Then (2.3.6) and (2.3.7) are satisfied and as

before we conclude that the method is quasi-optimal and stable.

b) Now consider the case of test spaces VI,n introduced in case a).

Our goal is to show that

(2.3.19) C n !_ D(H,Mx) n- C n

where C1 , C2 > 0 and independent of n and with M = M(S n'Vl,n)

We will prove the left side of (2.3.19) by applying Theorem 2.4.

Toward this end we construct a particular u and estimate Q(un) , as
n n

defined in (2.3.12), from above. Let u E S be defined by
n n

(2.3.20) U'(X) = (-i)J j-i/2 x <x ,,.,
nn ' xj-il <x j =1,..n;

the graph of u' is shown in Fig. 1.
n

Fig. 1 Graph of the function u
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Note that

(2.3.21) INX~c0

Now let 40,. **. lE denote the basis functions defined byInI V,n

4r0(x) = -nx , 0 < x <x1

*i(x)

Then we have

(-~-1 n-2

(2.3.22) B(u,4)

Any ~IE V In can be written in the form

n-i

i=0

and we easily see that

Therefore

IB(u C. i (B(ul* l

n i=0

*~~~n n-c(l11 2
- [ 2 4 on

TI TI
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Thus

(2.3.23) Q(u ) < n < Cn -

n

Since (2.3.10) holds with - , we see from Theorem 2.4 that D > Cn

This proves the left side of (2.3.19).

Before turning to the proof of the right side we will construct a

particular w E R(u ) which will play the role of u in Theorem 2.4.n

We begin by constructing W(x),...,nl(X) so that

i(x) = 0 for Ix-xil > 1/n

fxi+l -l
(2 (i3.2d) 6ij , i,j = 0,...,n-1 not both 0(2.3.24) i*n '
jxi-l

0 0Y0 dx =2

where 6 ij Specifically we choose as shown

in Fig. 2.

.

Fig. 2. The graph of the function
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Then we define

n-1

(2.3.25) P(x) = 2 [ (x)
i=O

and

(2.3.26) 
w(x) = J p(t)dt .

It is easy to see that

(2.3.27) 1W _ C/n

From (2.3.22), (2.3.24) and the definition of w we have

B(u ) uny i dx w'*i dx B(w, , i =

which shows that P w = u Using (2.3.20) and (2.3.26) we thus have

1PI (w) X Ix' :-:n C
-" >_Cn

IWIX IWIX

I which was our goal.

Let us remark that un  is not unique. It is essential, however, that

it is what we referred to earlier as a wild or irregular function. It is

also of interest to note that the function u E S defined by

u'(X) = (-1) , x < x < x.n j-

will not lead to the desired result since we could only prove

Q() > cVn-

I
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We will now prove the right side of (2.3.19) by applying Theorem 2.3.

Le u E Sn  and set

Wi = u'(xi-l/2n) , i = 1,2,...

Theen select v E Vl,n  so that

V(x ) =v i

whe-ere

V = w i4w1i i-l , , . , -

v w. v =0.
u I n

We easily see that

1 2 1 0

B(u,v) 1 (w . ''

0 12 1

1 1 w
n

Consider the auxiliary (2n-l) x (2n-1) matrix

21

1 2 1 0

, . ...
2 1

1 2

and the associated quadratic form

i,
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P . .
r --

The elgenfunctions are sin k , k = 1,...,2 n-1 , and thus it is easily

seen that the least eigenvalue Xl(n) of A satisfies

X (n) Cn-2

Thus

i'. 2n-1

(2.3.26) 4)(z) Cn 2 z.2

Setting

wn -1
z= w

n
w
n -

w

we see that

B(uv) 4n 4(z)

and thereforv from (2.3.26) we obtain

B(u,v) 
> C n- 3(

2w 2 +-'+2w
2  +w2

(2.3.27) > Cn 3 w2

C T - 2 , , 2
= C rIUKx

k. - - - - . ~ ~--~----------*--
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We also see that

2vI c 1  12
IVIV C n i=O

1 2 2- 2

-C B(u,v)

Combining (2.3.27) and (2.3.28) we obtain

>-C n IuI,

from which we get

Y(S n9 V in) inf sup IB(u,v)I > Cn
uES n vEV n

JIx=1 IVIV=l

Since

for u E H *v E V ,thus from Theorem 2.3 we have

I) (u, M ,X) '- C
n

for u E H . This proves the right side of (2.3.19).

Next we show that, although D(H,M n9X) is large, the method

still works well for smooth solutions. Specifically we will prove that
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(2.3.29) lu-unIX f C h[uJc3(u )

3-
for u E C (I) where u P(SVI)u and h =/n Let ui  u (X.)

n nln n i

It is easy to see that the finite element equations reduce to

u0  0

u -u
(2.3.30) 1 =  f dx

-- Xl

1+12f i dx , i 1,...,n-i

i-1

where *0,...,*nI are the basis functions for V introduced earlier.
n-1 l,n

3- 2-
Since u E C (I) , f E C (I) and we can write

2 f f* dx- 1x f dx a h 2

x0  x0

(2.3.31) 
0

2 J f *i dx - f dx a i h 3 1....,n-i
xi_ xi-

.where

(2.3.32) li _ CII 2 _

Now, using (2.3.30),

r ~i+l I i+l

[ui+l-U(xi)] - [u1 l-U(xi l)] = 2 J f qi dx - j f dx , i 1 ..
xi_ !  xi-I

and so, setting . = u .-u(x) , (2.3.30) impliesan s s1tn (x1
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3

(2.3.33)

From (2.3.32) and (2.3.33) we obtain

:fj SCIf 2  h , j even

and

:!E C CIfI 2 "+ 1 j, odd.

Using (2.3.30) and (2.3.31) again we have

u -U(x 1 ) 2 flf *6 dx f J f dx a=

Thus

2.I5CIf I 2 0,h,...,n
c(I

with C independent of .n

Letting n uz denote the S n-interpolant of u we have

i l- ix < l - n u x + 1 - i

(2.3.34) {~C I~~I IuI + 17 U-U I
3hu - n ! n~I

C (I)

we further see that

u(X )-u (X dlI iF~lI Ch2u 3
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lrom this we get

i i 2• n <UUnil, Ch Jul 3
2 C M

and thus, using the fact that Is x- CnJSIL for s E S (the so-called
2

inverse assumptions for S ), we have
n

(2.3.35) u-u n X Chlujc3( -)

Combining (2.3.34) and (2.3.35) we have

lu-un -i, ! Chlul C3 ( .

This is the desired result.

Define now

H= {u Julc 3 - < , u(O) = 0 , u"(x) ilul c3

or u"(x) < -llUl c3 ( on (m,-) with

I -nI = a2}, a1,CL2 > 0

*'G Consider now the method using (SnVl) . Then we easily see that
n' 1,n

(2.3.36) C(H,M ,HI) K

where K depends on alCI but is dependent of n In fact it is

easy to see that for u E H

Cha 1 a2 Iu 3
--

Z(t,S ,H ) ..n u H1I
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and (2.3.36) is obtained by combining this estimate with (2.3.29).

Let us summarize some main points shown in case b).

1) The method is not quasi-optimal on H = H- ; nevertheless the

instability is not too strong. The analysis has been based on results

relating to Theorem 2.3.

2) The method is quasi-optimal on the set H , i.e., all functions

belonging to H are K-perfect. We note that 1H is not closed in

3) The result that H is a set of perfect solutions cannot be

directly proven by Theorem 2.2-2.5. A special analysis is necessary.

.!
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3. Further Examples of Finite Element Methods

3.1. Introduction

In this section we examine three different finite element methods

for the approximate solution of a simple model problem, namely that of a

longitudinally loaded bar on an elastic support. The classical displace-

ment formulation of this problem is

[ Lu - -(E(x)F(x)u'(x))' + b(x)u(x) p(x) , 0 < x< 1

( 1 ) u ( ) = u () 0

Here u(x) , 0 < x < I , denotes the longitudinal displacement and E(x)

denotes the modulus of elasticity, F(x) the crossectional area, b(x) the

spring constant of the elastic support, and p(x) the longitudinal load.

We will let a(x) = E(x)F(x) and assume

(3.1.2) 0 < P a(x) <_ P2 , 0 < b(x) < V2

but otherwise allow a and b to be rather general functions. They

could be, for example, constant functions (corresponding to a bar with

uniform crossection and elastic properties and a uniform elastic support)

or step functions with many steps (arising in the study of composite

materials, for example).

We now cast this probem in variational form. Let

(3.1.3) B(u,v) = 1 (au'v'+buv)dx
0

Then we easily see that (3.1.1) can be formulated as

{ u E H (ti : HI , u(O) = u(0) = 0}
(. )B(u,v) pv dx , for all v 1

i~i 0
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01
B is defined in H × V ,where H= V =

To complete the specification of a directed variational method, in addition

to the bilinear form we must select family F of the trial and test spaces S

and V , the space X , and the discretization parameter a We will present

three choices for S and V in the next two subsections.

3.2. The Standard Finite Element Method

Let A = {0 = 0  x I < -.. < 1i , n(A) > 2 , be an arbitrary

mesh on [0,1] and set I = I (A) = (x jl ,)  h = h.(A) = x-1

and h = h(A) = max hj (A) Then set
O<j_<n (A)

(3.2.1) S = SA V VA - {s(x) s(x) is continuous on [0,1]

s(x) is linear on each I.,

and s(O) = s(l) = 01

Let H V = 1 F = {(SV) A any mesh) , X = 1 and a(SV ) = h(A)

We can now discuss the directed variational method

M = (H,H1 ,V,F,B,a)

The optimality of this method is given in the following

Theorem 3.1 The method M is quasi-optimal on l1 with respect to H i.e.

(3.2.2) C( 1 ) c

with C depending only on P, and P2 but independent of A . Thus

(3.2.3) lu-P(SA,VA)U1HI C inf )u-vjl I
H tiES A HI

Proof. This standard result is proved by showing (2.3.18) and using

Theorems 2.3 and 2.1. In fact for all u k 11 wk, have

4G



54

2 22

B(u,u) = ((au') + bu2)dx
0

..i:) i 0 (u')2dx 1 ,l~

0 H

01 1
As stated in Theorem 3.1, the optimality constant C(H ,M,HI) is

finite and is bounded uniformly with respect to the class of coefficients

a and b satisfying (3.1.2). Regarding approximality let us state the

standard result for the elements under consideration:

(3.2.4) inf [u-sj 1 - Chlul 2
sES H H

where C is independent of A . Thus for any u E H n H

- Chlul 2

(3.2.5) Z(u,SA9,H) H

lul 1HI

2
If our solution u lies in H , then from (3.2.3) and (3.2.4) we have

the error estimate

lu-P(SA,VA)u 1 < ChlulH2
H H

We note that if a'(x) and b(x) are bounded, then we can prove that

lUlH 2 : C IpL2

From this and (3.2.5) we obtain

(3.2.6) Iu-P(SA,VA)UIH1 C hIPI

H

C here depends on the maximum of a' and b .(3.2.6) Is not, hAowever,
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valid for problems with rough coefficients (coefficients which are step

functions, for example).

Next, let us consider the same family of simple methods but choose

X = L . We present a result showing the resulting method is not quasi-
2

optimal.

Theorem 3.2. Suppose a(x) = 1 and b(x) = 0 Then for any constant
'01

C > 0 and any A there is a u H such that

(3.2.7) lu-P(SAV 1) L > C inf I u-sL

2 sES A2

Thus

°I

(3.2.8) C(H ,M(SA V A) ,L) = +

for any A

Proof. Suppose A = {0,1/2,1) and let u be as shown in Fig. 3.1

with u(1/2) = 1 It is easily shown that, since the

./ ,P (S, V )u

, /\
i /\

/\

0 1/2 1
Fig. 3. The graph of function 3.

4
P(S ,V )u is the S - interpolant of u , as shown in Fig. 3 by the

AA A

dotted curve, u-P(SAVA)uIL is nearly as large as IP(SA,VA)UIL - 11v"3

A ,
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and inf lu-sL , which is lull is nearly as small as zero. This
sESA 2 2

completes the proof for this simple mesh. The proof for a general mesh

is similar.

It is interesting to compare Theorems 3.1 and 3.2 with Example 2.2.2.

In that example we treated the same boundary value problems but based our

approximation in polynomials instead of piecewise linear functions. In01

Example 2.2.2. we obtained C(H ,M(S n,Vn),L 2 ) - Cvn in contrast to the

result C(H ,M(SA,VA),L2)= + - obtained above.

Theorem 3.3. Suppose a'(x) and b(x) are bounded. Then for any

u E H2 we have

(3.2.7) Ju-P(SAVA)U L2  Chh2 lul ChP2pt

where C is independent of u and A but depends on a and b If

H 2 01 al oH= {u : u E H H , nx aul 2 or

u"(x) - au I H2 on (o,-q) where I w--j = 2 }~H 2

with ai 9 C2 > 0 , then any u E H is K-perfect with K depending on

a ,92,a, and b . Thus

C(H,M,L2) C

Proof. The first part of the result is standard (see e.g.[ 2 ]) and

the second part follows from the fact that

Ch2 aa 2 lUlH 2
Z(u,SA,L2 ) > H

l u l 2
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We consider now one more choice for X , namely X L Then

the following result is proved in 131.

Theorem 3.4. Suppose that a,b are sufficiently smooth. Then there

is a constant C such that for any u E L.

(3.2.9) lu-P(S ,VA)U L __ C inf lu-s1L
sES A

A

with C independent of u and A but depending on 1,2 and the maxi-

mum of the first derivatives of a and b

Thus

(3.2.10) C(H ,M,L.) _ C

It is interesting to compare Theorems 3.1, 3.2, and 3.4. The computationally

identical method is quasi-optimal on H I with respect to H1  and L but

is not with respect to 12

3.3. A Second Method for Solving (3.1.4)

In this subsection we suppose b(x) = 0 . Here we choose

(3.3.1) S = SA = V = VA = {s(x) s is continuous on [0,1]

s(x) is a solution of (as')' = 0 on

each I. , s(O) = s(1) = 0}J

ol1
We again let H = V = H , X = II , {(SV) A A any mesh)

and a(SV ) - h(A) We will discuss the directed variational method

M (H1,HIB ,,B,a)

Exactly as in Theorem 3.1 we see that this method is quasi-optimal on H

with respect to H. The methods differ, however, in regard to the



58

approximation properties of the trial spaces employed. The

approximation properties of the trial space introduced in (3.3.1) is given

in the following theorem.

Theorem 3.5. There is a constant C depending only on P1  and

P2 such that

(3.3.2) inf lu-si ChLu Chip
SES H 2 2

A

Proof. See [4].

Combining this result with the above mentioned quasi-optimality we

obtain
.4

i'.(3.3.3) 1u-P(S AV)U I A 1 h IL2

H 2

This estimate should be compared with (3.2.6). They differ in that while

(3.3.3) holds for all a(x) and b(x) satisfying (3.1.2), (3.2.6) holds

only for smooth a and b . Thus we see that the method M considered

in this subsection is very accurate. Because of the unusual test and

trial space it is, however, not easily implemented. The method introduced

in Subsection 3.4 will be as accurate as the method discussed here while

being as easily implemented as the standard finite element method discussed

in subsection 3.2.

3.4. A Third Method for Solving_(3.1.4)

As underlined in Section 2.2, the trial and test spaces play very

different roles. The trial V ace is chosen for its approximation properties

and the test space is chosen so that the method is optimal or nearly optimal so

so that tht method is easily implemented. The standard method, which

uses piecewlse linear functions for both trial and test spaces is optimal

I
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and is easily implemented. The trial space has poor approximation properties

for problems with rough coefficients, however. The method discussed in

Subsection 3.3 is optimal and has good approximation properties while not

being easily implemented because of the way the load enters in the computation.

The method discussed in this subsection will use the trial space S A used

in the second method and use the test space VA used in the standard
iA
method. This choice will simplify the implementation, making it

virtually of the same complexity as standard method, while preserving

the advantages of the second method.

Suppose as above that b(x) = 0 . Let SA be as defined in (3.3.1)

and let VA be as defined in (3.2.1). We let H = i , X = H, V =H

= (SAV)} , and c(SVA) = h(A), and consider the directed variational

method

M (H,H ,V,F,B,a)

Theorem 3.6. There is a positive constant y depending only on p1

and P2 such that

(3.4.1) inf sup IB(S,V)I = Y(SA,VA) > y
sES A vEVAA A

for all A

Proof. For s E S let s VA be defined by

s(x.) = s(x.) , j 0 O,1,...,n

Set

(3.4.2) " (j a-dx)-lh"J I.
J

I
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Then we easily see that

as'! ajS'

Using this relation we have

B(s,s) = as s' dx

n f (as') 2

A d
2a

P21fl ( I)2 dx

2

2 F2 Is HI

and

I-I 2Jf (, 2 d
H 0 s)d

=2 j ( ISL) 2 dx

2

2 H

IS

Henc e

3

p1
Y(sAV) 2

2vp
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Combining Theorems 3.6 with Theorems 2.1, 2.3 we see that the optimality

constant C(H ,M,Hl) is bounded uniformly over entire class of coefficients

satisfying (3.1.2). In addition, from Theorem 3.5 we see that we have good

approximation properties. Thus

(3.4.3) I uP(SA'VAIuI )1 Ch ILuIL < ChIp
H 2 2

with C depending only on Pl and P2 Although estimates (3.2.6) and

(3.4.3) are similar, the values of the constants C in (3.2.6) and C in

(3.4.3) could be very different if a(x) is not smooth (C << C).

One further point needs to be considered. We are using the bilinear

form B(s,v) = as'v'dx , as in subsection 3.2, but we are now using

different trial and test spaces and the trial space consists of less simple

elements. However it is easily seen that the stiffness matrix is symmetric

and is as easily computed as the stiffness matrix for the standard method.

Theorem 3.7. Let l,..., n I be the standard basis for SA and VA

and (pi... (n-l be the standard bases for S pi (Xi) = 9ij Then

(3.4.4) B((,)(P= a p (p !dx = f j P' dx .

Proof. Again we use the relation

as' j

for any s S 9 (3.4.4) follows immediately from this.

A'
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It should be noted that the stiffness matrix for the standard finite

element method discussed in Subsection 3.2 is

I" I

(3.4.5) a p dx
a0 dx

* where

I'l. a dx

(3.4.6) a. = 
j

h.

Since the load vector (the right hand side in the discretized problem) is

the same in the standard method as in the method discussed in this sub-

section, we see that the methods differ only in the occurrence of a. or

a. , defined in (3.4.2) and (3.4.6), respectively in the stiffness matrices,

defined in (3.4.4) and (3.4.5), respectively. Obviously a. and a. are
"i.- J J

very close when a(x) is nearly constant but they can be very different

when a(x) is rapidly changing. This shows that the results obtained by

the standard method and the third method could be very different, the third

method performing equally well for problems with smooth coefficients and

strikingly better for problems with rough coefficients. The analysis here

has been for the H norm. We remark that similar results hold for the L2-

norm. Let us also remark that the third method can be extended to equations

with b # 0 so as to preserve its good properties. For further results

see [4].

I

I
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4. Conclusions Regarding the Selection of Finite Element Methods

4.1. Introduction

As we have stated in the Introduction (Section 1) and have shown in

the previous Sections, there are many finite element methods which can be

considered for any specific problem. In this section we discuss the applica-

tion of the ideas elaborated on above to the rational selection or design of

effective methods.

4.2. Definitions of the Various Types of Variational Methods

It is essential to clarify as much as possible the aim of an engineering

computation, the set of possible solutions, the environment in which the

computations are to be made, and the various types of computational procedures

actually in use in computational engineering. Toward this end we have intro-

duced the notions of simple variational, variational, directed variational,

and computational variational methods. Nearly all of the computational

procedv os used in practice fall within this framework. We mention here the

h-version and the p-version of the finite element method, displacement and

mixed methods, various adaptive approaches, etc. The examples discussed in

Sections 2 and 3 show that the same computational procedure can be viewed as

different directed variational or computational variational methods, the dif-

ference being related to the use of different norms with which to measure the

error. We have seen that the different methods have significantly different

behavior. It appears that without precise definitions of the various types of

variational methods, a careful discussion of finite element methods leading to a

rational choice of a method for a specific problem would not be possible.

4.3 Approximabijtyand Optimait_4y

The notions of approximability and optimality are two central ideas to

be considered in the comparison of finite elemenat methods. Clearly the

.4
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trial space should be tailored as well as possible to the class of possible

solutions. The approximability constant Z(u,S,X) is a measure of how well

this has been done. The trial spaces introduced in Subsections 3.3 and 3.4

are obviously preferable to the standard polynomial spaces.

The test space should be selected so as to lead to a small optimality

constant C(u,M,X) and so as to lead to computational simplicity. The

optimality constant is a measure of how well the approximate solution performs

in comparison with the best possible approximation. In Example 2.2.2 with

X X = L we have seen that for the solution u , C(uMn,X2) A An and
2 2 n~1

Z(U,Sn X2) b n . Thus the error satisfies lU-n lI/n , i.e., theX2

good approximability properties of S are partially eroded because of the~n

large optimality constant. We have also seen that u leads to the largest

optimality constant. The method does, however, converge.

The second and third methods treated in Section 3 both have small

optimality constants, but the third method is much easier to implement than

the second.

The selection of the test spaces heavily influences the set of solutions

which arc perfect, i.e., the set of solutions for which the method works well,

assuming good approximability. Sometimes all "reasonable" solutions are

perfect, while the imperfect solutions are "wild". Example 2.3.3 is an

illuttration of this. In other problems reasonable solutions could be very

imperfect. Example 2.2.1 is an illustration of this. That example also

clearly shows the effect of the choice of the test space on the class of

perfect solutions. In any case, the method which is perfect for the largest

class of solutions is preferable.

If a large class of solutions are imperfect and ihe optimality constant

+ as an n - + (n being the number of degrees of freedom, say), then

a method with a smaller C is preferable to one with a large C . The
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standard finite element method (cf. the discussion in Subsection 3.2 in the

constant coefficient case) and the method discussed in Example 2.2.2, when

considered in connection with X L can be compared in this way. In the

2nfirst~ cas A' Le C( , 2 )  while in the second case C(L 2,Mn,L2 )  n.

In many situations, rigorous estimates of the optimality constant are

not available and judgments concerning choice of methods must be based on

computational experience. In these situations, one must attempt to gain

insight on the class of perfect solutions from the computational experience.

Nevertheless, we have to be aware that there is a possibility that only

perfect solutions will be tested and the conclusions could be misleading.

Approximability and optimality together influence the performance of

the method. A method could have a deteriorating optimality constant and

still give reasonably good accuracy if the approximability is sufficiently

good to offset the lack of optimality. Thus we are interested in the set of

solutions for which the method converges as well as the set of perfect

solutions.

Examples 2.2.1 and 2.3.3 clearly illustrate the influence of the choice

of trial and test space on optimality. If the "major part" of the bilinear

form B is symmetric (cf. Example 2.2.1 for IJA>1), then using the same

space for the trial and test space is often advisable. If the "major part"

of B is nonsymmetric (cf. Example 2.2.1 for AI<i and Example 2.3.3),

then it is often useful to consider different trial and test spaces.

4.4. Stabilitv and the Stabilitv Condition

The stability constant should be viewed as a tool to be -:-;ed in the

j analysis of optimality. C(u,M,X) and D(u,M,X) , and also C(1I,M,X) and

D(H,M,X) , are closely related,as shown in Theorem 2.1. The constant y(S,V)

is in turn used to estimate the stability constant, as shown in Theorem 2.3.
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We note that y(S,V) does not depend on the exact solution u and thus that

3an analysis of stability or optimality based on an estimate for y(S,V) must

concentrate on "worst" possible cases. The stability condition (2.3.17) is

necessary in the sense that if it is violated, then the method must diverge

for at least one solution, as shown by Theorems 2.2 and 2,5. Nevertheless,

a method can violate this condition and still perform well for a large class

of solutions.

Recently there have been statements in the literature to the effect

that certain methods perform well computationally even though the stability

condition (also sometimes called the inf-sup, LBB, or BB conditions) is

-j violated. This occurrence can be explained by noting that in the computations

only perfect solutions were considered. These particular solutions may have

been considered partly on the basis of physical insight, but partly by

accident. Thus we see that a detailed analysis of the structure of the set

of perfect solutions is highly desirable. Certainly formal insistance that

the stability condition is satisfied is inappropriate.

We see from Theorem 2.1, that the method discussee n Example 2.2.2,

when considered in connection with the L2-norm (case (b)), does not satisfy

the stability condition, since the optimality constant -* as n- . Still,
4

on the basis of experimental evidence, it is likely that the method would

perform well because only "reasonable" solutions would be considered. A

similar situation occurs when we consider the performance of the standard

finite element method in the L2-norm or when considering the second choice

of spaces in Example 2.3.3. In contrast it is very likely that experimentally

one would generally see that the method discussed in the Example 2.2.1 has a

serious deficiency when IXI<]
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